Properties of the beta-nerve growth factor receptor in development

نویسندگان

  • K Herrup
  • E M Shooter
چکیده

The cell surface receptor for beta-nerve growth factor was used as a probe to study the development of embryonic chick sensory ganglia. The ganglia were shown to lose their responsiveness to nerve growth factor in vitro between 14 and 16 days of embryonic age. This loss occurred by a decrease in the magnitude of the maximum biological response, not by a shifting of the response to higher concentrations. Binding assays for the beta-nerve growth factor receptor, using 125I-radiolabelled beta-nerve growth factor, were performed with cells from sensory ganglia 8, 12, 14, 16, 18, and 21 days of age. The assays revealed a twofold increase in the number of receptor sites per ganglion between 8 and 14 days and a sixfold drop between 14 and 16 days of embryonic life. Neither increase nor decrease was accompanied by a large change in the affinity of the receptor for the protein. Together with the results of the bioassay, the data show that the loss of biological responsiveness is correlated with and may be due to a loss of the cells' ability to bind beta-nerve growth factor. Correlation of the results of the binding assays with the known ontogeny of the chick embryo provides a hint at the role of nerve growth factor in normal development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Resistance Training Along with Royal Jelly Supplementation on Expression of Nerve Growth Factor and Tyrosine Kinase A Receptor in the Hippocampal Tissue of Alzheimer's Rats

Introduction: Current study aimed to investigate the effects of resistance training (RT) along with royal jelly (RJ) supplementation on hippocampal expression of nerve growth factor (proNGF) and p75 receptor in a rat’s model of Alzheimer's disease.  Method: 42 male Sprague-Dawley rats were treated with Trimethyltin chloride (8 mg/kg). Then, the rats were randomly divided into seven equal group...

متن کامل

Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli

Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....

متن کامل

Ferulic acid, a phenolic compound with therapeutic effects in neuropsychiatric disorders, stimulates the production of nerve growth factor and endocannabinoids in rat brain

Introduction: Ferulic acid, a phenolic phytochemical with neuroprotective, anti-inflammatory, and antioxidant properties, has shown promising antidepressant-like effects in behavioral studies; however, its mechanism(s) of action have not been fully understood. Based on the contribution of nerve growth factor (NGF) and endocannabinoid signaling (eCBs) to the emotional or antidepressant activ...

متن کامل

Recombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells

Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...

متن کامل

P 143: The Effect of Platelet Activating Factor on Inflammatory Response in Multiple Sclerosis

Multiple sclerosis is an autoimmune disease of the central nervous system which its main characteristic is an inflammation and demyelination and subsequent, neural degeneration. Many studies have shown that inflammation causing neuronal demyelination. MS is the most common cause of chronic neurological disability in during youth which the prognosis is that can be death. Platelet activating fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1975